Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 13: 1229460, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37600945

RESUMEN

Food processing lines represents a suitable environment for bacterial biofilm formation. One of the most common biofilm-forming genera in dairy processing plants is Bacillus, which includes species that may have a negative impact on safety and/or quality of dairy products. In the current study, we evaluated the biofilm forming ability and molecular characteristics of dairy Bacillus spp. isolates (B. cereus and B. subtilis). Reference strains (B. cereus ATCC 14579 and B. subtilis NCTC 3610) were also included in the experiment. All isolates were screened by micro-titer plate (96 wells) to assess their ability to form biofilm. Then, they were tested on two common food contact surfaces (polystyrene and stainless steel) by using 6-well plates and AISI 316 stainless steel coupons. Biofilm formation, expressed as biofilm production index (BPI), was higher on polystyrene than stainless steel (except for B. cereus ATCC 14579). These observations were further confirmed by scanning electron microscopy, which allowed the microscopy observation of biofilm structure. Moreover, a possible correlation among total viable cell counts (CFU) and BPI was examined, as well as a connection among biofilm formation and bacterial cell hydrophobicity. Finally, whole genome sequencing was performed highlighting a genetic similarity among the strains belonging to the same species. The presence of selected genes involved in biofilm formation was also examined showing that strains with a greater presence of these genes were able to produce more biofilm in the tested materials. Additionally, for B. cereus strains enterotoxin genes were detected.


Asunto(s)
Bacillus , Bacillus/genética , Poliestirenos , Acero Inoxidable , Biopelículas , Enterotoxinas
2.
Foods ; 11(17)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36076825

RESUMEN

The occurrence of Listeria monocytogenes on Gorgonzola cheese surface was reported by many authors, with risks arising from the translocation of the pathogen inside the product during cutting procedures. Among the novel antimicrobial strategies, ozone may represent a useful tool against L. monocytogenes contamination on Gorgonzola cheese rind. In this study, the effect of gaseous ozone (2 and 4 ppm for 10 min) on L. monocytogenes and resident microbiota of Gorgonzola cheese rind stored at 4 °C for 63 days was evaluated. A culturomic approach, based on the use of six media and identification of colonies by MALDI-TOF MS, was used to analyse variations of resident populations. The decrease of L. monocytogenes was less pronounced in ozonised rinds with final loads of ~1 log CFU/g higher than controls. This behaviour coincided with a lower maximum population density of lactobacilli in treated samples at day 28. No significant differences were detected for the other microbial determinations and resident microbiota composition among treated and control samples. The dominant genera were Candida, Carnobacterium, Staphylococcus, Penicillium, Saccharomyces, Aerococcus, Yarrowia, and Enterococcus. Based on our results, ozone was ineffective against L. monocytogenes contamination on Gorgonzola rinds. The higher final L. monocytogenes loads in treated samples could be associated with a suppressive effect of ozone on lactobacilli, since these are antagonists of L. monocytogenes. Our outcomes suggest the potential use of culturomics to study the ecosystems of complex matrices, such as the surface of mould and blue-veined cheeses.

3.
Ital J Food Saf ; 11(2): 10350, 2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35832038

RESUMEN

Microbial biofilms existing in food industries have been implicated as important contamination sources of spoilage and pathogenic microorganisms in the finished products. Among the innovative strategies proposed to contrast biofilms in food environments, ozone is recognised as an environmentally friendly technology but there are few studies about its effect against bacterial biofilms. The objective of this study was to evaluate the effect of gaseous ozone (50 ppm for 6 h) in inhibition and eradication of biofilm formed by twenty-one dairyisolated Pseudomonas spp. strains. Before ozone treatments, all isolates were screened for biofilm formation according to a previously described method. Strains were then divided in four groups: weak, weak/moderate, moderate/strong, and strong biofilm producers based on the biofilm biomass value of each isolate determined using the optical density (OD - 595 nm). Inhibition treatment was effective on the strain (C1) belonging to the weak producers' group, on all strains classified as weak/moderate producers, on two strains (C8 and C12) belonging to the group of moderate/strong producers and on one strain (C13) classified as strong producer. Conversely, eradication treatments were ineffective on all strains tested, except for the strain C4 which reduced its biofilm-forming abilities after exposure to ozone gas. In conclusion, gaseous ozone may be used to enhance existing sanitation protocols in food processing environments, but its application alone not seems sufficient to contrast Pseudomonas spp. established biofilms.

4.
Int J Food Microbiol ; 378: 109784, 2022 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-35749910

RESUMEN

Listeria monocytogenes is considered a major challenge for the food industry as it can persist for long periods in food processing plants by forming biofilms. The aims of this study were: i) to assess the biofilm producing ability of 57 Listeria monocytogenes isolates previously subjected to whole-genome sequencing (WGS); ii) to compare the levels of biofilm formation with the presence or absence of biofilm associated genes. To determine the presence or absence of a known set of biofilm associated genes, a comparative genomic analysis was performed on each strain. Among Listeria monocytogenes isolates, 58 %, 38.5 % and 3.5 % exhibited weak, moderate or strong biofilm production, respectively. No difference in biofilm production was observed between food and environmental isolates. The percentage of Listeria monocytogenes strains isolated from meat products (57 %) classified as moderate or strong biofilm producers was higher than the percentage obtained for strains isolated from dairy products (28 %). The presence of the Stress Survival Islet 1, the arsD stress gene and the truncated inlA protein was significantly associated with increased levels of biofilm. Combining biofilm phenotype with molecular and genotyping data may provide the opportunity to better understand the relationship between genes linked to biofilm formation in Listeria monocytogenes.


Asunto(s)
Listeria monocytogenes , Listeriosis , Biopelículas , Industria Lechera , Microbiología de Alimentos , Genómica , Humanos , Listeria monocytogenes/genética , Carne
5.
Microorganisms ; 10(1)2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35056612

RESUMEN

Managing spoilage and pathogenic bacteria contaminations represents a major challenge for the food industry, especially for the dairy sector. Biofilms formed by these microorganisms in food processing environment continue to pose concerns to food manufacturers as they may impact both the safety and quality of processed foods. Bacteria inside biofilm can survive in harsh environmental conditions and represent a source of repeated food contamination in dairy manufacturing plants. Among the novel approaches proposed to control biofilm in food processing plants, the ozone treatment, in aqueous or gaseous form, may represent one of the most promising techniques due to its antimicrobial action and low environmental impact. The antimicrobial effectiveness of ozone has been well documented on a wide variety of microorganisms in planktonic forms, whereas little data on the efficacy of ozone treatment against microbial biofilms are available. In addition, ozone is recognized as an eco-friendly technology since it does not leave harmful residuals in food products or on contact surfaces. Thus, this review intends to present an overview of the current state of knowledge on the possible use of ozone as an antimicrobial agent against the most common spoilage and pathogenic microorganisms, usually organized in biofilm, in dairy manufacturing plants.

6.
Foods ; 10(11)2021 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-34829157

RESUMEN

Processed cheese is a commercial product characterized by high microbiological stability and extended shelf life obtained through the application of severe heat treatment. However, spore-forming bacteria can survive through thermal processes. Among them, microorganisms belonging to Bacillus genus have been reported. In this study, we examined the microbiological population of the first hours' production of processed cheeses in an Italian dairy plant during two seasons, between June and October 2020. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used to identify bacteria colonies, allowing the isolation of Bacillus cereus and Bacillussubtilis strains. These results were further confirmed by amplification and sequencing of 16 rRNA bacterial region. A multi-locus sequence type (MLST) analysis was performed to assess the genetic similarity among a selection of isolates. The fourteen B. cereus strains showed two sequence types: ST-32 was observed in only one strain and the ST-371 in the remaining thirteen isolates. On the contrary, all twenty-one B. subtlis strains, included in the study, showed a new allelic profile for the pycA gene, resulting in a new sequence type: ST-249. For B. cereus strains, analysis of toxin genes was performed. All isolates were positive for nheABC, entFM, and cytK, while hblABCD, bceT, and ces were not detected. Moreover, the biofilm-forming ability of B. cereus and B. subtilis strains was assessed, and all selected isolates proved to be biofilm formers (most of them were stronger producers). Considering the genetical similarity between isolates, jointly with the capacity to produce biofilm, the presence of a recurring Bacillus population could be hypothesized.

7.
Foods ; 10(7)2021 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-34206833

RESUMEN

Among food-borne pathogens, Listeria monocytogenes continues to pose concerns to food business operators due to its capacity to form biofilm in processing environments. Ozone may be an eco-friendly technology to control microbial contaminations, but data concerning its effect on Listeria monocytogenes biofilm are still limited. In this study, the effect of gaseous ozone at 50 ppm on planktonic cells and biofilm of reference and food-related Listeria monocytogenes strains was evaluated. Ozone caused a reduction in microbial loads of 3.7 ± 0.4 and 3.9 ± 0.4 Log10 CFU/mL after 10 and 30 min, respectively. A complete inactivation of planktonic cells after 6 h of treatment was observed. Biofilm inhibition and eradication treatments (50 ppm, 6 h) resulted in a significant decrease of the biofilm biomass for 59% of the strains tested, whilst a slight dampening of live cell loads in the biofilm state was observed. In conclusion, gaseous ozone is not sufficient to completely counteract Listeria monocytogenes biofilm, but it may be useful as an additional tool to contrast Listeria monocytogenes free-living cells and to improve the existing sanitization procedures in food processing environments.

8.
Antibiotics (Basel) ; 10(4)2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33915769

RESUMEN

The antimicrobial-resistance (AMR) in bacteria represents a major challenge for public health [...].

9.
Animals (Basel) ; 11(4)2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33807139

RESUMEN

Antimicrobial resistance (AMR) represents one of the most critical challenges that humanity will face in the following years. In this context, a "One Health" approach with an integrated multidisciplinary effort involving humans, animals and their surrounding environment is needed to tackle the spread of AMR. One of the most common ways for bacteria to live is to adhere to surfaces and form biofilms. Staphylococcus aureus (S. aureus) can form biofilm on most surfaces and in a wide heterogeneity of environmental conditions. The biofilm guarantees the survival of the S. aureus in harsh environmental conditions and represents an issue for the food industry and animal production. The identification and characterization of biofilm-related proteins may provide interesting insights into biofilm formation mechanisms in S. aureus. In this regard, the aims of this study were: (i) to use proteomics to compare proteomes of S. aureus growing in planktonic and biofilm forms in order to investigate the common features of biofilm formation properties of different strains; (ii) to identify specific biofilm mechanisms that may be involved in AMR. The proteomic analysis showed 14 differentially expressed proteins among biofilm and planktonic forms of S. aureus. Moreover, three proteins, such as alcohol dehydrogenase, ATP-dependent 6-phosphofructokinase, and fructose-bisphosphate aldolase, were only differentially expressed in strains classified as high biofilm producers. Differentially regulated catabolites metabolisms and the switch to lower oxygen-related metabolisms were related to the sessile conformation analyzed.

10.
Front Microbiol ; 11: 1983, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32983010

RESUMEN

Over the past decades, antimicrobial resistance (AMR) has been recognized as one of the most serious threats to public health. Although originally considered a problem to human health, the emerging crisis of AMR requires a "One Health" approach, considering human, animal, and environmental reservoirs. In this regard, the extensive use of antibiotics in the livestock production systems to treat mastitis and other bacterial diseases can lead to the presence of AMR genes in bacteria that contaminate or naturally occur in milk and dairy products, thereby introducing them into the food chain. The recent development of high-throughput next-generation sequencing (NGS) technologies is improving the fast characterization of microbial communities and their functional capabilities. In this context, whole metagenome sequencing (WMS), also called shotgun metagenomic sequencing, allows the generation of a vast amount of data which can be interrogated to generate the desired evidence, including the resistome. However, the amount of host DNA poses a major challenge to metagenome analysis. Given the current absence of literature concerning the application of WMS on milk to detect the presence of AMR genes, in the present study, we evaluated the effect of different sequencing depths, host DNA depletion methods and matrices to characterize the resistome of a milk production environment. WMS was conducted on three aliquots of bulk tank milk and three aliquots of the in-line milk filter collected from a single dairy farm; a fourth aliquot of milk and milk filter was bioinformatically subsampled. Two commercially available host DNA depletion methods were applied, and metagenomic DNA was sequenced to two different sequencing depth. Milk filters proved to be the most suitable matrices to evaluate the presence of AMR genes; besides, the pre-extraction host DNA depletion method was the most efficient approach to remove host reads. To our knowledge, this is the first study to evaluate the limitations posed by the host DNA in investigating the milk resistome with a WMS approach, confirming the circulation of AMR genes in the milk production environment.

11.
Foods ; 9(9)2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32825203

RESUMEN

The main aim of the present study was to evaluate the level of antibiotic resistance, prevalence and virulence features of methicillin-resistant Staphylococcus aureus (MRSA) isolated from heavy swine at abattoir level and farming environments in Lombardy (Northern Italy). With this scope, 88 different heavy swine farms were surveyed, obtaining a total of n = 440 animal swabs and n = 150 environmental swabs. A total of n = 87 MRSA isolates were obtained, with an overall MRSA incidence of 17.50% (n = 77) among animal samples and a 6.67% (n = 10) among environmental. Molecular characterisation using multilocus sequence typing (MLST) plus spa-typing showed that sequence type ST398/t899 and ST398/t011 were the most commonly isolated genotypes, although other relevant sequence types such as ST1 or ST97 were also found. A lack of susceptibility to penicillins, tetracycline and ceftiofur was detected in >91.95, 85.05 and 48.28% of the isolates, respectively. Resistance to doxycycline (32.18%), enrofloxacin (27.59%) and gentamicin (25.29%) was also observed. Additionally, a remarkable level of antibiotic multiresistance (AMR) was observed representing a 77.01% (n = 67) of the obtained isolates. Genetic analysis revealed that 97.70% and 77.01% of the isolates harboured at least one antibiotic resistance or enterotoxin gene, respectively, pointing out a high isolate virulence potential. Lastly, 55.17% (n = 48) were able to produce measurable amounts of biofilm after 24 h. In spite of the current programmes for antibiotic reduction in intensively farming, a still on-going high level of AMR and virulence potential in MRSA was demonstrated, making this pathogen a serious risk in swine production chain, highlighting once more the need to develop efficient, pathogen-specific control strategies.

12.
Front Microbiol ; 11: 830, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32499762

RESUMEN

Literature data regarding the survival of microorganisms on materials used for food package purposes are scarce. The aim of the current study is to assess the survival of Listeria monocytogenes on different packaging materials for dairy products during extended storage at different temperatures. Three packaging materials (5 × 5 cm) were contaminated with a cocktail of five strains of Listeria monocytogenes suspended in a cheese homogenate, including the cheese's native microbial population. Contaminated samples were incubated at 37°, 12°, and 4°C and periodically analyzed up to 56 days. The evolution of the total viable count and pathogen population was evaluated. At 37°C, the results showed that Listeria monocytogenes was no longer detected on polyethylene-coated nylon (B) by day 4 and on polyethylene-coated parchment (A) and greaseproof paper (C) by day 7. Interestingly, the initial cell population (ranging between 2.5 and 2.7 log CFU/cm2) of Listeria monocytogenes increased to 3 log CFU/cm2 within 4 days of storage at 12°C on A and C. During storage, the number remained fairly constant at 12°C and 4°C on two materials (A-C) and decreased slowly on the third one (B). This study shows that survival of Listeria monocytogenes on packaging materials for dairy products will be higher when stored at 4 or 12°C compared to 37°C. The survival of Listeria monocytogenes on the packaging materials raises concerns of cross-contamination during food handling and preparation at catering and retail premises and within the home, highlighting the importance of treating the packaging materials as a potential source of cross-contamination. These initial findings may aid in quantifying risks associated with contamination of food packaging materials.

14.
BMC Vet Res ; 14(1): 6, 2018 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-29304804

RESUMEN

BACKGROUND: There is a general consensus in recognizing that traditional meat inspection is no longer able to address the hazards related to meat consumption. Moreover, it has been shown that invasive procedures, such as palpation and incision, can increase microbial contamination in carcasses. For these reasons, legislations all over the world are changing meat inspection techniques, moving towards visual-only techniques. Hence, there was also the need to test visual-only inspection in pigs in Italy. RESULTS: A protocol for visual-only post-mortem inspection was produced together with a 24-class scheme used to record pathological lesions. A list of guidelines needed for univocal interpretation and classification of lesions was developed. To record lesions at the slaughtering line, a light instrument that is resistant to the slaughter environment was designed and then produced in collaboration with an electro-medical company. Six contracted veterinarians were chosen and trained. They performed visual-only post-mortem inspections on 231.673 heavy pigs in three different slaughterhouses of Northern Italy. Visual-only inspection was compared to traditional inspection on 38.819 pig carcasses. No relevant differences were found between the two systems. CONCLUSIONS: The comparison between traditional and visual-only inspection showed that visual-only inspection can be adopted in pig slaughterhouse. The analysis of the performance of the veterinarians stressed the importance of standardization and continuous education for veterinarians working in this field.


Asunto(s)
Inspección de Alimentos/métodos , Carne Roja/normas , Porcinos , Mataderos , Animales , Inspección de Alimentos/instrumentación , Guías como Asunto , Humanos , Italia , Control de Calidad , Programas Informáticos
15.
J Food Sci ; 82(10): 2364-2370, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28892140

RESUMEN

The capability to produce biofilm is an important persistence and dissemination mechanism of some foodborne bacteria. This paper investigates the relationship between some molecular characteristics (SCCmec, ST, spa-type, agr-type, cna, sarA, icaA, icaD, clfA, fnbA, fnbB, hla, hlb) of 22 food-related methicillin-resistant Staphylococcus aureus (MRSA) strains and their ability to form biofilm on stainless steel and polystyrene. Five (22.7%, 5/22) strains were able to synthesize biofilm on polystyrene, and one of these (4.5%, 1/22) strains was also able to synthesize biofilm on stainless steel. The largest amount of biofilm was formed on polystyrene by 2 MRSA strains isolated from cows' milk, thus raising concern about the dairy industry. The majority of MRSA biofilm producers carried SCCmec type IVa, suggesting that the presence of SCCmecIVa and/or agr type III could be related to the ability to form biofilm. In conclusion, in order to achieve an acceptable level of food safety, Good Hygiene Practices should be strictly implemented along the food chain to reduce the risk of colonization and dissemination of MRSA biofilm-producing strains in the food industry. PRACTICAL APPLICATION: In this study, some assayed isolates of food-related MRSA demonstrated the capacity to form biofilm. Biofilm formation differed according to surface characteristics and MRSA strains. A relationship was observed between some molecular characteristics and the ability to form biofilms. Few studies have investigated the ability of MRSA to form biofilms, and the majority of these studies have investigated clinical aspects. This work was performed to investigate whether or not there is a difference between MRSA food isolates and MRSA clinical isolates in their ability to form biofilm. These initial findings could provide information that will contribute to a better understanding of these aspects.


Asunto(s)
Biopelículas , Staphylococcus aureus Resistente a Meticilina/fisiología , Leche/microbiología , Infecciones Estafilocócicas/microbiología , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas/efectos de los fármacos , Bovinos , Femenino , Humanos , Meticilina/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación
16.
Pathogens ; 6(3)2017 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-28869552

RESUMEN

The foodborne pathogen Listeria monocytogenes is a concern in food safety because of its ability to form biofilm and to persist in food industry. In this mini-review, the issue represented by this pathogen and some of the latest efforts performed in order to investigate the composition of biofilms formed by L. monocytogenes are summarized.

17.
J Food Prot ; 80(3): 515-522, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28207292

RESUMEN

To evaluate the occurrence of Toxoplasma gondii and to genetically characterize its isolates in carcasses of industrial fattening pigs, blood, diaphragm, and heart samples were collected from 375 carcasses of pigs slaughtered to be processed for Parma ham production. Pigs had been bred on approved farms (n = 75) located in the so-called Food Valley in Italy. Sera were examined for immunoglobulin G antibodies to T. gondii by modified agglutination test (MAT). Both heart and diaphragm samples from seropositive carcasses were processed for the presence of T. gondii DNA (B1 locus) by real-time PCR and high resolution melting (HRM) assay. Anti-Toxoplasma antibodies were detected in 2.1% of pig carcasses, with titers from 1:10 to 1:320. T. gondii DNA was detected in all (eight) seropositive carcasses and in 11 (5 heart and 6 diaphragm samples) of 16 samples; that is, it was detected in heart tissue in two subjects, in diaphragm tissue in three subjects, and in both muscle tissues in three subjects. Toxoplasma genotypes were determined in seven of eight carcasses: type III was identified in four carcasses, type II in two, and both III and II in one carcass. The serological findings and the molecular detection of T. gondii strains suggest that cured meat products obtained from industrially bred pigs may be potential sources of toxoplasmosis for humans. Our results provide novel, important information regarding the seroprevalence and molecular prevalence of T. gondii in intensively reared pigs within this specific region of Italy, particularly because Parma ham from this region is known and consumed worldwide. On-farm preventive measures combined with slaughterhouse monitoring of carcasses of pigs bred for cured meat production should never be overlooked to prevent the introduction of T. gondii into the food chain and to ensure safety for consumers of these products.


Asunto(s)
Toxoplasma/aislamiento & purificación , Toxoplasmosis Animal/epidemiología , Animales , Anticuerpos Antiprotozoarios , Humanos , Italia , Estudios Seroepidemiológicos , Porcinos , Enfermedades de los Porcinos/epidemiología
18.
Res Microbiol ; 168(1): 1-15, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27542729

RESUMEN

There is increasing concern about the public health impact of methicillin-resistant Staphylococcus aureus. Food and animal are vectors of transmission, but the contribution of a contaminated environment is not well characterized. With regard to this, staphylococcal biofilms serve as a virulence factor, allowing MRSA strains to adhere to surfaces and other materials used in the food industry. Methicillin resistance and biofilm-forming capacity may contribute to the success of S. aureus as a human pathogen in both health care and community settings and the food production chain. This review summarizes current knowledge about the significance of food- and animal-derived MRSA strains and provides data on attachment and biofilm formation of MRSA. In addition, the impact of quorum sensing on MRSA gene expression and biofilm formation is examined.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Microbiología de Alimentos , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Staphylococcus aureus Resistente a Meticilina/fisiología , Infecciones Estafilocócicas/veterinaria , Animales , Regulación Bacteriana de la Expresión Génica , Percepción de Quorum , Infecciones Estafilocócicas/microbiología
19.
Microorganisms ; 4(3)2016 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-27681916

RESUMEN

Listeria monocytogenes is a foodborne pathogen able to persist in food industry and is responsible for a severe illness called listeriosis. The ability of L. monocytogenes to persist in environments is due to its capacity to form biofilms that are a sessile community of microorganisms embedded in a self-produced matrix of extracellular polymeric substances (EPS's). In this review, we summarized recent efforts performed in order to better characterize the polymeric substances that compose the extracellular matrix (ECM) of L. monocytogenes biofilms. EPS extraction and analysis led to the identification of polysaccharides, proteins, extracellular DNA, and other molecules within the listerial ECM. All this knowledge will be useful for increasing food protection, suggesting effective strategies for the minimization of persistence of L. monocytogenes in food industry environments.

20.
Ital J Food Saf ; 5(4): 6151, 2016 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-28058247

RESUMEN

The aim of this survey was to obtain data on microbiological contamination of pig carcasses and environments in three large-scale Italian slaughterhouses (identified as A-B-C) located in Northern Italy. Each slaughterhouse was visited six times. Five carcasses and three different sites of the slaughterhouse (before and during slaughter) were sampled on each sampling day. A single pooled caecal sample was taken on each sampling day. A total of 90 carcasses, 108 environmental samples and 18 caecal samples were collected. Samples from pig carcasses and slaughterhouse environment were analyzed for total viable count (TVC), Enterobacteriaceae count (EBC) and Salmonella. The caecal contents were examined for Salmonella. Carcasses from slaughterhouse A presented the greatest TVC and EBC mean log value, whereas environmental samples collected during slaughter activities from slaughterhouse C showed the greatest TVC and EBC mean log value. As far as the environmental samples collected before slaughter activities are concerned, an average up to 6 log10 colony forming unit (CFU)/cm2 TVC in two slaughter plants (A and C) and 5 log10 CFU/cm2 TVC in one slaughter plant (B) was detected. Salmonella was recovered in two slaughterhouses (A and B). Four different Salmonella serotypes were detected in the positive samples (11). Within serotype S. Rissen and S. Typhimurium monophasic-variant isolates, two pulsed-field gel electrophoresis patterns were identified. The findings in this survey suggest that carcass contamination is influenced by the slaughterhouse plant and this could be a result of differences in line speed. The results of environmental sampling have not shown an association with the slaughterhouse plant.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...